Asymptotic Theory for Common Principal Component Analysis
نویسندگان
چکیده
منابع مشابه
Towards theory of generic Principal Component Analysis
In this paper, we consider a technique called the generic Principal Component Analysis (PCA) which is based on an extension and rigorous justification of the standard PCA. The generic PCA is treated as the best weighted linear estimator of a given rank under the condition that the associated covariance matrix is singular. As a result, the generic PCA is constructed in terms of the pseudo-invers...
متن کاملPrincipal Component Projection Without Principal Component Analysis
We show how to efficiently project a vector onto the top principal components of a matrix, without explicitly computing these components. Specifically, we introduce an iterative algorithm that provably computes the projection using few calls to any black-box routine for ridge regression. By avoiding explicit principal component analysis (PCA), our algorithm is the first with no runtime dependen...
متن کاملMethodology and Theory for Nonnegative-score Principal Component Analysis
We develop nonparametric methods, and theory, for analysing data on a random p-vector Y represented as a linear form in a p-vector X, say Y = AX, where the components of X are nonnegative and uncorrelated. Problems of this nature are motivated by a wide range of applications in which physical considerations deny the possibility that X can have negative components. Our approach to inference is f...
متن کاملCompression of Breast Cancer Images By Principal Component Analysis
The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most relevant information of X. These eigenvectors are called principal components [8]. Ass...
متن کاملCompression of Breast Cancer Images By Principal Component Analysis
The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most relevant information of X. These eigenvectors are called principal components [8]. Ass...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1986
ISSN: 0090-5364
DOI: 10.1214/aos/1176349930